CEPHAMS-STEREOCHEMISTRY OF 3-EXOMETHYLENECEPHAM

D. O. Spry

The Lilly Research Laboratories Eli Lilly and Company Indianapolis, Indiana 46206

(Received in USA 28 August 1972; received in UK for publication 11 December 1972)

Recent interest in the C_4 stereochemistry of 3-exomethylenecephams (1,2) prompts us to report our studies involving its elucidation using cepham derivatives.

Treatment of $\underline{1}^{(3)}$ with diazomethane followed by 2.5 equiv \underline{m} -chloroperbenzoic acid (\underline{m} -CPBA) gave the sulfone ester $\underline{2}$. Low pressure hydrogenation of $\underline{2}$ using palladium on carbon followed by silica gel chromatography gave 75% of a single isomer $\underline{3}$.

V= C6H5OCH2CONH

The stereochemistry of $\underline{3}$ at C_3 and C_4 is provided in hydrogenation studies of $\underline{4}$ and $\underline{5}$.

Van Heyningen and Ahern⁽⁴⁾ have previously reported the hydrogenation of $\underline{4}$ and subsequent degradation of the C_3 isomer mixture to D-valine thus establishing the C_4 - α -carboxyl configuration of $\underline{\Delta}^2$ cephems. Hydrogenation of $\underline{4}$ according to the procedure of Van Heyningen and Ahern followed by esterification and oxidation with 1.1 m-CPBA equiv gave $\underline{6}$ (163-164°)⁽⁵⁾, $\underline{7}$ (152-155°), $\underline{8}$ (184-185°) after silica gel chromatography; the yields indicate a preferential approach of the catalyst from the back or α side of the molecule.

The sulfoxides $\underline{6}$, $\underline{7}$ and $\underline{8}$ can be reduced (6) to two different sulfides $\underline{9}$ and $\underline{10}$.

Peracid oxidation of $\underline{10}$ gave $\underline{8}$ and $\underline{7}$ in a 3/1 ratio as a result of the β -axial methyl hindering the approach of the peracid from the β face of the molecule. Peracid oxidation of $\underline{9}$ gave only $\underline{6}$; however, ozone oxidation provides the α sulfoxide in 80% yield (7).

The sulfoxides $\underline{6}$, $\underline{7}$ and $\underline{8}$ can be oxidized further to two different sulfones $\underline{3}$ and $\underline{11}$ (167-168°),

one of which $(\underline{11})$ is also a product from the high pressure hydrogenation of $\underline{5}$, thus providing the key to the stereochemistry at $C_3^{(8,9)}$.

Compound 12 (192-193°) exhibits 5-bonded coupling (ca. 1.0 cps) between the α -axial C_4 proton and H_7 . Since such coupling is absent in 3 the presence of H_4 - H_7 coupling can be used as evidence for the abnormal C_4 stereochemistry in other cepham compounds (12). Treatment of 12 with strong base (0.1N NaOH/dioxane) results in C_4 epimerization to yield 3, thus indicating that the α configuration of the carboxyl is the base stable configuration.

In addition to the selective protonation described above, preferential alkylation from the β face of the C_A -carbanion is illustrated by the conversion of $\underline{13}$ and $\underline{14}$ to $\underline{15}$.

In conclusion, hydrogenation studies thus show that the C_4 carboxyl in the 3-exomethylene-cepham $\underline{1}$ is of a normal (α) configuration and thus in agreement with prior published data^(1,2).

REFERENCES

- 1. M. Ochiai, O. Aki, A. Morimoto, and T. Okada, Tetrahedron Letters, 3241 (1972).
- 2. M. Ochiai, E. Mizuta, O. Aki, A. Morimoto, and T. Okada, Tetrahedron Letters, 3245 (1972).
- 3. The 3-exomethylenecepham $\underline{1}$ was prepared in these laboratories by R. R. Chauvette. Paper in preparation.

- 4. E. M. Van Heyningen and L. K. Ahern, J. Med. Chem., 11, 933 (1968).
- 5. Acetone-methylenechloride/hexane was the solvent for all crystallizations.
- G. V. Kaiser, R. D. G. Cooper, R. E. Koehler, C. F. Murphy, J. A. Webber, I. G. Wright, and E. M. Van Heyningen, J. Org. Chem., 35, 2430 (1970).
- 7. D. O. Spry, J. Org. Chem., 37, 793 (1972).
- 8. We thank J. B. Campbell for running the high pressure hydrogenation.
- R. B. Morin, B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews, J. Amer. Chem. Soc., 91, 1401 (1969).
- 10. Prior to our studies R. D. G. Cooper noted similar H_4 - H_7 coupling in \underline{A} . Unpublished results of R. D. G. Cooper

11. We have also observed H_4-H_7 coupling in \underline{B} , its ß sulfoxide (183-184°), the α sulfoxide, and the corresponding sulfone.

 For further discussion of H_A-H₇ coupling, see "Cephalosporins and Penicillins: Chemistry and Biology", E. H. Flynn, Ed., Academic Press, N.Y. 1972 (in press)